Study on RAFT Polymerization and Nano-structured Hybrid System of POSS Macromers

نویسندگان

  • Yuanming DENG
  • Safia Boudjema
  • Jean Yves BUFFIERE
چکیده

This work is generally aimed to synthesize POSS based BCPs via RAFT polymerization, to study their self-assembly behaviors, to research on the effect of POSS self-assembly structure on the bulk properties and to prepare nanostructured hybrid epoxy via self-assembly of POSS based copolymer. In Chapter1, We studied the RAFT polymerization of POSS macromers and capable to synthesize well defined POSS based BCPs with high POSS fraction and different topology such as AB,BAB and (BA)3. The vertex group and the morphology effect on thermomechanical properties of POSS based BCPs as well as the structure-property relationship was investigated. Dispersion RAFT polymerization in apolar solvent was applied and various aggregates with different morphology in Chapter2. Cooling induced reversible micelle formation and transition was found and the pathway selection in vesicle formation was investigated. Nano-construction of O/I hybrid epoxy materials based on POSS based copolymers was investigated in Chapter4. The effect of functional group content on miscibility of POSS based statistic copolymer and epoxy was investigated. A novel method to nanostructure epoxy hybrid involving self-assembly of POSS based BCPs in epoxy was presented. High homogeneity and well size/morphology control of core-corona structure containing rigid POSS core and soluble PMMA corona in networks were obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Monte Carlo Simulation of RAFT Polymerization

In this work, based on experimental observations and exact theoretical predictions, the kinetic scheme of RAFT polymerization is extended to a wider range of reactions such as irreversible intermediate radical terminations and reversible transfer reactions. The reactions which have been labeled as kinetic scheme are the more probable existing reactions as the theoretical point of view. The ...

متن کامل

Versatile grafting approaches to star-shaped POSS-containing hybrid polymers using RAFT polymerization and click chemistry.

An alkyne-bearing polyhedral oligomeric silsesquioxane (POSS) core was used to prepare POSS-containing polymer hybrids using 'grafting to' or 'grafting from' strategies in combination with reversible chain transfer and click chemistry.

متن کامل

Effect of Solvent properties on Crystallinity and Morphology of Octavinyl-POSS: A Comparative Study

Polyhedral Oligomeric Silsesquioxanes (POSSs) are a class of hybrid structures synthesized through hydrolytic condensation (Sol-Gel method) of trifunctional silane monomers under specific conditions. Octavinyl silsesquioxane (OVS) nanostructures are comprised of a rigid inorganic silica core surrounded by vinyl functional groups with an under-developed synthesis procedure. Generally, POSS morph...

متن کامل

Cure Kinetic of Polyurethane/Fluorinated POSS Hybrid

One of the decisive factors in obtaining the desired properties in coatings is their complete curing, which necessitates the study of kinetics of curing. In recent years, many studies have been conducted on the use of polyhedral oligomeric silsesquioxane (POSS) in coatings. Creating functional groups on POSS and using it in formulation can create new or improve the properties of coatings. I...

متن کامل

Morphology, Microstructure, and Rheology of Amphiphilic Telechelics Incorporating Polyhedral Oligosilsesquioxane

Amphiphilic telechelics incorporating polyhedral oligosilsesquioxane (POSS) end-caps were synthesized and studied as a novel building block for the construction of inorganic-organic hybrid materials. Their micron-scale morphologies were investigated using hot-stage polarizing optical microscopy (POM), revealing a dramatic influence of POSS macromer incorporation. The molecular-scale crystalline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013